Resampling-based selective clustering ensembles
نویسندگان
چکیده
Traditional clustering ensembles methods combine all obtained clustering results at hand. However, we observe that it can often achieve a better clustering solution if only part of all available clustering results are combined. This paper proposes a novel clustering ensembles method, termed as resampling-based selective clustering ensembles method. The proposed selective clustering ensembles method works by evaluating the qualities of all obtained clustering results through resampling technique and selectively choosing part of promising clustering results to build the ensemble committee. The final solution is obtained through combining the clustering results of the ensemble committee. Experimental results on several real data sets demonstrate that resampling-based selective clustering ensembles method is often able to achieve a better solution when compared with traditional clustering ensembles methods. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Random Voronoi ensembles for gene selection
The paper addresses the issue of assessing the importance of input variables with respect to a given dichotomic classification problem. Both linear and non-linear cases are considered. In the linear case, the application of derivative-based saliency yields a commonly adopted ranking criterion. In the non-linear case, the method is extended by introducing a resampling technique and by clustering...
متن کاملA Comparison of Resampling Methods for Clustering Ensembles
Combination of multiple clusterings is an important task in the area of unsupervised learning. Inspired by the success of supervised bagging algorithms, we propose a resampling scheme for integration of multiple independent clusterings. Individual partitions in the ensemble are sequentially generated by clustering specially selected subsamples of the given data set. In this paper, we compare th...
متن کاملBagging for Path-Based Clustering
A resampling scheme for clustering with similarity to bootstrap aggregation (bagging) is presented. Bagging is used to improve the quality of pathbased clustering, a data clustering method that can extract elongated structures from data in a noise robust way. The results of an agglomerative optimization method are influenced by small fluctuations of the input data. To increase the reliability o...
متن کاملDiversity-Based Weighting Schemes for Clustering Ensembles
Clustering ensembles has been recently recognized as an emerging approach to provide more robust solutions to the data clustering problem. Current methods of clustering ensembles typically fall into instance-based, cluster-based, or hybrid approaches; however, most of such methods fail in discriminating among the various clusterings that participate to the ensemble. In this paper, we address th...
متن کاملComparison of Standard Resampling Methods for Performance Estimation of Artificial Neural Network Ensembles
Estimation of the generalization performance for classification within the medical applications domain is always an important task. In this study we focus on artificial neural network ensembles as the machine learning technique. We present a numerical comparison between five common resampling techniques: k-fold cross validation (CV), holdout, using three cutoffs, and bootstrap using five differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 30 شماره
صفحات -
تاریخ انتشار 2009